
Journal of Computational Physics 228 (2009) 7069–7085
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
An application of one-sided Jacobi polynomials for spectral modeling
of vector fields in polar coordinates

T. Sakai *, L.G. Redekopp
Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1191, USA
a r t i c l e i n f o

Article history:
Received 23 February 2009
Received in revised form 10 June 2009
Accepted 17 June 2009
Available online 23 June 2009

PACS:
02.90.Hm

Keywords:
Spectral methods
Tau-method
Jacobi polynomials
Coordinate singularity
Polar coordinates
Vector functions
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.06.017

* Corresponding author. Tel.: +1 213 740 9210.
E-mail addresses: tsakai@usc.edu (T. Sakai), larry
a b s t r a c t

A spectral tau-method is proposed for solving vector field equations defined in polar coor-
dinates. The method employs one-sided Jacobi polynomials as radial expansion functions
and Fourier exponentials as azimuthal expansion functions. All the regularity requirements
of the vector field at the origin and the physical boundary conditions at a circumferential
boundary are exactly satisfied by adjusting the additional tau-coefficients of the radial
expansion polynomials of the highest order. The proposed method is applied to linear
and nonlinear-dispersive time evolution equations of hyperbolic-type describing internal
Kelvin and Poincaré waves in a shallow, stratified lake on a rotating plane.
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1. Introduction

Differential equations in physics are often described in a polar coordinate system. Such equations comprise coefficients
varying as 1=r or 1=r2, and these terms are apparently singular at r ¼ 0. When the equations, especially the nonlinear ones,
are to be solved numerically, careful consideration must be given to these singularities so that the numerics can yield phys-
ically feasible solutions as r ! 0. The spectral methods, provided that the solution is expanded by appropriate polynomials,
can yield smooth and bounded solutions, allowing one to simulate the physics of the problem without anxieties about having
unphysical solutions near r ¼ 0 at any time. For comprehensive discussions of spectral methods for problems with coordi-
nate singularities, we refer to Chapter 18 in Boyd [5].

Physically well-behaved solutions in polar coordinates must satisfy a regularity condition that is solely a consequence of
the coordinate transformation, independent of governing equations. In particular, an arbitrary scalar function / defined in
the polar coordinates ðr; hÞ is expanded in a Fourier series of the form
/ðr; hÞ ¼
X1

m¼�1
/mðrÞeimh: ð1Þ
. All rights reserved.
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If /ðr; hÞ is analytic ðC1Þ at r ¼ 0, then in some vicinity of r ¼ 0;/mðrÞ is expanded in a Taylor series of the form
/mðrÞ ¼
X1
k¼0

/mnrjmjþ2k; ð2Þ
where n is a cumulated radial modal index defined as n ¼ jmj þ 2k. This regularity condition is proved by writing the expan-
sion (1) in terms of Cartesian coordinates ðx; yÞwith /mðrÞ expanded by arbitrary powers of r, and requiring that all the terms
are polynomial in x and y (e.g. see [5,7]). The best example of /mðrÞ is the Bessel function of the first kind JmðkrÞ, the radial
eigenfunction of a Laplacian operator r2/ ¼ �k2/. The JmðkrÞ, having mth order zeros at r ¼ 0 with the same parity as m
(even or odd function about r ¼ 0 depending on m being even or odd), is expanded exactly in the form of (2). Although such
a Bessel function seems to be suitable for the expansion function, since the defining differential equation (Bessel’s equation)
is nonsingular at the outer boundary, the rate of convergence can be degraded, and the Gibb’s phenomenon possibly emerges
near the boundary (e.g. see [8, pp. 29–35]).

For the radial expansion function in a bounded domain, therefore, it is ideal that the function satisfies not only the reg-
ularity condition at r ¼ 0, but also the defining differential equation is singular at the outer boundary [17]. The one-sided
Jacobi polynomial, proposed independently by Matsushima and Marcus [17] and Verkley [23] for solving differential equa-
tions, satisfies these requirements. The one-sided Jaocbi polynomials have been used for seventy years in geometrical optics
as the Zernike polynomials [25,4,19], and their applications are now numerous. In a scaled domain 0 6 r 6 1, the one-sided
Jacobi polynomial QmnðrÞ is defined as
QmnðrÞ ¼ rjmjPða;bÞk ð2r2 � 1Þ; ð3Þ
where Pða;bÞk ðxÞ is the Jacobi polynomial (see [1, Section 22]) and a and b (both >�1) are arbitrary parameters. Since
Pða;bÞk ð2r2 � 1Þ is an even polynomial of degree 2k;QmnðrÞ is a polynomial containing powers rjmj; rjmjþ2; � � � ; rjmjþ2k. This readily
implies that /mðrÞ admits a direct expansion in terms of Q mnðrÞ. Furthermore, noting the fact that Pða;bÞk ðxÞ is an orthogonal
polynomial in �1 6 x 6 1 with respect to the weight ð1� xÞað1þ xÞb, the orthogonality relation is written as
Z 1

0
Q mnðrÞQ mn0 ðrÞwðrÞdr ¼ dnn0

2ð2kþ aþ bþ 1Þ
Cðkþ aþ 1ÞCðkþ bþ 1Þ

k!Cðkþ aþ bþ 1Þ ; ð4Þ
and the weight function wðrÞ is given by
wðrÞ ¼ ð1� r2Þar2ðb�jmjÞþ1: ð5Þ
Since the Jacobian for polar coordinates is r, the obvious choice is a ¼ 0 and b ¼ jmj, the parameter set used by Matsushima
and Marcus [17] and Verkley [23]. The choice of a ¼ b ¼ �1=2 gives the polar-Robert functions rjmjTkð2r2 � 1Þ ¼ rjmjT2kðrÞ,
where TkðxÞ is the Chebyshev polynomial of degree k. In contrast to the aforementioned Jacobi basis set, the polar-Robert
bases are known to be severely ill-conditioned at larger truncations [18,5]. Recently Livermore et al. [15] proposed the poly-
nomial with the new set a ¼ �1=2 and b ¼ jmj � 1=2, the so called Worland polynomial in their paper. This particular set of
parameters gives the weight function 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

, the same as that for Chebyshev polynomials. Their numerical experiments
showed that both the original one-sided Jacobi and the Worland polynomials behaved similarly, but when approximating a
boundary layer function, Worland polynomials achieved a smaller local error close to the boundary.

The one-sided Jacobi polynomials have been proven to work successfully for problems involving scalar functions. Matsu-
shima and Marcus [17] and Livermore et al. [15] tested the one-sided Jacobi polynomials for Bessel’s eigenvalue problem,
and it was shown that a much faster convergence rate was achieved than when using Chebyshev polynomials for the expan-
sion function. As for time-dependent problems Verkley [24] and Matsushima and Marcus [17] successfully applied the one-
sided Jacobi polynomials for solving incompressible fluid dynamic equations in a disc. As demonstrated by their pioneer
work, the use of the one-sided Jacobi polynomials as radial basis functions is particularly advantageous for explicitly advanc-
ing time-dependent problems, overcoming a severe time step restriction related to over-resolution near r ¼ 0 (i.e. the pole
problem), which frequently occur with use of conventional radial bases (e.g. Chebyshev polynomials) or finite difference
methods.

Regarding problems involving vector functions, still only a few applications of the one-sided Jacobi polynomials exist.
Since the regularity condition of the vector function is different from the scalar counterpart, some modification of the
one-sided Jacobi basis is necessary. Leonard and Wray [13] used modified one-sided Jacobi polynomials, multiplying a factor
ð1� r2Þ to satisfy the boundary condition at r ¼ 1, and constructed a divergence-free velocity field for viscous flow in a pipe.
Ishioka [9,10] modified the one-sided Jacobi polynomials in similar manner, and constructed Galerkin-type vector basis
functions completely satisfying the regularity and boundary conditions for solving the shallow water equation in a disc. Re-
cently Auteri and Quaterpelle [2,3] applied the one-sided Jacobi radial bases in their spectral-Galerkin solver for three-
dimensional, scalar and vector elliptic-type equations in a sphere and in a finite cylinder, and then the spectral convergence
of the solution algorithms was clearly demonstrated.

In fluid mechanics, flows inside a circular cylinder have long been of great interest, and accurate flow (vector) solvers are
essential tools to investigate class of flows such as instabilities of boundary layers and turbulent flows. Incompressible
Navier–Stokes equations have been solved in the past employing spectral methods with use of conventional polynomial
bases for radial expansions. For example, Orszag and Patera [21] and Priymak and Miyazaki [22] used parity-restricted
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Chebyshev polynomials for radial bases to expand the flow field in a periodic, circular pipe. Lopez et al. [16] used recombined
Legendre polynomials for radial bases in their spectral-Galerkin flow solver in a finite cylinder. Primary advantage of using
such conventional bases is that computationally efficient algorithms for highly-resolved flows can be constructed by exploit-
ing already existing, successful subroutine libraries and flow solvers that are originally developed for cartesian coordinates.
None of these applications, however, fully satisfy the regularity conditions of both vector and scalar field variables. Only
essential conditions, that is, a few regularity conditions of the lowest modes, are satisfied to enforce the field variables
and the divergence of the flow field be nonsingular on the center axis.

As shown in the next section, the expansion coefficients of radial ðrÞ and azimuthal ðhÞ components of an analytic vector
function are coupled to each other. For this reason, the expansion functions for radial and azimuthal vector components are
designed necessarily in a coupled form as well. Adding requirements to satisfy the physical boundary conditions for the vec-
tor components, the resulting basis functions become complicated and, consequently, the Galerkin-type formulation and
subsequent implementation become inevitably complicated. In this paper we propose a tau-method that allows one to keep
using the original form of the one-sided Jacobi polynomial (3) for the radial basis functions. All the regularity conditions as
well as physical boundary conditions are fully satisfied by adjusting the extra spectral (tau) coefficients. Through this ap-
proach, the coupling of the vector basis function is avoided, and the drawback of using Galerkin-type basis functions can
be alleviated. Applications of the proposed method to hydrodynamic model equations are described in Sections 3 and 4.

2. Spectral representation of vector function

Since vectors are not invariant under the transformation between two coordinate systems, the regularity condition of the
vector functions is essentially different from that of the scalar functions. This can be derived in many ways (e.g. see
[14,9,20]). In what follows we summarize the results.

An arbitrary vector function u � uer þ veh defined in the polar coordinates ðr; hÞ is expanded in a Fourier series of the form
uðr; hÞ ¼
X1

m¼�1
umðrÞeimh: ð6Þ
If uðr; hÞ is analytic at r ¼ 0, then in some vicinity of r ¼ 0;umðrÞ is expanded in a Taylor series of the form
umðrÞ ¼
X1

k¼0;nP1

umn�1rjmjþ2k�1 ¼
X1

k¼0;nP1

umn�1rn�1; ð7Þ
where n ¼ jmj þ 2k, and the leading coefficient umjmj�1 satisfies the relation
umjmj�1 þ isgnðmÞvmjmj�1 ¼ 0 for jmjP 1: ð8Þ
It should be noted that in (7) there is a condition for the summation index k as implicitly given by n P 1. In particular, if m ¼ 0,
the radial index is n ¼ 2k and, then, k starts from 1 (not zero) such that the radial power r2k�1ð¼ rn�1Þ is nonsingular at r ¼ 0.

The radial expansion function umðrÞhas a base factor rjmj�1, the opposite parity to the scalar counterpart (2). The relation (8) is
a coupled constraint hidden in the analytic vector components, a so called the kinematic constraint [20]. Only satisfying the par-
ity condition (7) does not guarantee the regularity of the vector function. Satisfying the kinematic constraint provides an impor-
tant physical implication. For an instructive purpose, suppose that we compute the divergence of the vector field at r ¼ 0,
r � u ¼ @u
@r
þ u

r
þ 1

r
@v
@h

: ð9Þ
Substituting the expansion (6) and (7) into above expression, we have
r � u ¼
X1

m¼�1

X1
k¼0; nP1

fðjmj þ 2kÞumn�1 þ i mvmn�1grjmjþ2k�2eimh: ð10Þ
The lowest radial power is r�1 when m ¼ �1 and k ¼ 0, and its coefficient is u�10 � iv�10. These values are identically zero
provided that the kinematic constraint (8) holds. Satisfying the kinematic constraint at m ¼ �1 guarantees thatr � u is finite
as r ! 0. But this is not sufficient to guarantee the regularity of r � u at r ¼ 0. Noting the fact that the divergence is a scalar
function, the radial components of r � u must be expanded in the form (2). The above expansion (10), therefore, must have
an mth order zero. Since the lowest order term of (10) is rjmj�2 when k ¼ 0, its coefficient jmjfumjmj�1 þ i sgnðmÞvmjmj�1gmust
vanish. This is accomplished by satisfying the kinematic constraint (8).

Field equations usually contain dependent variables of both scalar and vector forms. Since the power series in vector func-
tions is one degree less than that in scalar functions, the radial expansion functions become different from the scalar coun-
terparts. In order to use common radial basis functions for the vector and the scalar variables, we introduce a new vector
function ~u, a radial flux of u defined as
~uðr; hÞ � ru ¼
X1

m¼�1

~umðrÞeimh: ð11Þ
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The corresponding radial expansion function ~umðrÞ is of the same parity as that of the scalar functions (7)
~umðrÞ ¼
X1

k¼0; nP1

~umnrjmjþ2k; ð12Þ
where the radial index of ~umn is increased by one. Although the scalar functions contain a constant term if m ¼ 0, ~umðrÞ does
not contain such a constant term as a consequence of multiplication of r. The kinematic constraint is essentially the same as
(8) with the radial indices increased by one, namely
~umjmj þ i sgnðmÞ~vmjmj ¼ 0 for jmjP 1: ð13Þ
The expansion functions in the tau-method do not necessarily satisfy the boundary conditions or even the kinematic con-
straint. Therefore, we require the radial expansion functions to satisfy only the parity condition (12). Using the one-sided
Jacobi polynomial QmnðrÞ defined by (3), ~u can be approximated by a finite series in a triangular truncation form
~uNðr; hÞ ¼
XN

m¼�N

XNþ2s

n¼jmj; nP1

~umn Q mnðrÞ � dm0ð�1Þk ðbþ 1Þk
k!

Q 00ðrÞ
� �

eimh; ð14Þ
where dm0 is a Kronecker’s delta, and ð� � � Þk is a Pochhammer symbol defined as ðzÞk ¼ Cðzþ kÞ=CðzÞ. Note that the spectral
coefficient ~umn is different from that defined in (12). If m – 0, the radial expansion function is QmnðrÞ, identical with that for
the scalar functions. For m ¼ 0, since the parity condition (12) does not allow constant terms, a constant contribution (i.e.
Q0nð0Þ ¼ ð�1Þkðbþ 1Þk=k! as given by (58) in Appendix A) is subtracted from the original polynomial Q 0nðrÞ (note the factor
Q00ðrÞ ¼ 1 in (14)). Using the orthogonality (4), the spectral coefficient ~umn is determined through an integral transformation
~umn ¼
ð2kþ aþ bþ 1Þk!Cðkþ aþ bþ 1Þ

pCðkþ aþ 1ÞCðkþ bþ 1Þ

Z 2p

0

Z 1

0

~uNðr; hÞQmnðrÞwðrÞe�imhdrdh; ð15Þ
where n ¼ jmj þ 2k ð¼ jmj; jmj þ 2; . . . ;NÞ. This transformation formula is identical with the scalar function counterpart.
The radial expansion in (14) has extra s-coefficients indexed as n ¼ N þ 2;N þ 4; . . . ;N þ 2s. By adjusting these s-coeffi-

cients, the kinematic constraint and the boundary conditions can be satisfied. Although the kinematic constraint is imposed
only on the coefficients of rjmj terms in ~umðrÞ, in the polynomial expansion (14) each of the polynomials Q mnðrÞ at given m
contain the rjmj term. Specifically, the radial expansion function ~umðrÞ for given m ðjmjP 1Þ can be expressed as
~umðrÞ ¼
XNþ2s

n¼jmj

~umnQ mnðrÞ ¼
XNþ2s

n¼jmj

~umn cð0Þmnrjmj þ cð2Þmnrjmjþ2 þ � � �
� �

: ð16Þ
The coefficient cð0Þmn at the leading power rjmj hidden in Q mnðrÞ is readily obtained by using the polynomial expression of QmnðrÞ
given by (49) in Appendix A. Extracting only the coefficient of rjmj from (16) and denoting the coefficient as

~u0mjmj � ~u0mjmj; ~v 0mjmj
� �T

, we have
~u0mjmj ¼
XNþ2s

n¼jmj
cð0Þmn

~umn ¼
XNþ2s

n¼jmj
ð�1Þk ðbþ 1Þk

k!

~umn

~vmn

	 

�

~u0mjmj
~v 0mjmj

 !
: ð17Þ
Applying now the kinematic constraint (13) to the vector components ~u0mjmj and ~v 0mjmj above, we obtain the kinematic con-
straint corresponding to the Jacobi expansion (14) as
XNþ2s

n¼jmj
ð�1Þk ðbþ 1Þk

k!
f~umn þ i sgnðmÞ~vmng ¼ 0 for jmjP 1: ð18Þ
The physical boundary conditions can be expressed similarly in terms of the spectral coefficients. For example, suppose that
we want to impose a Dirichlet boundary condition u ¼ 0 at r ¼ 1 (i.e. ~u ¼ 0 at r ¼ 1). Employing a property of the one-sided
Jacobi polynomial (56) given in Appendix A, we have that
XNþ2s

n¼jmj; nP1

1
k!
fðaþ 1Þk � dm0ð�1Þkðbþ 1Þkg~umn ¼ 0 for all m: ð19Þ
The radial truncation limit ðn ¼ N þ 2sÞ depends on the number of physical boundary conditions. For example, if the bound-
ary condition is imposed on either u or v, the radial truncation limit should be chosen at N þ 2; that is, the boundary con-
dition is satisfied by adjusting ~umNþ2 (or ~vmNþ2 ), and the kinematic constraint (18) is satisfied by adjusting ~vmNþ2 (or ~umNþ2). If
the boundary condition is imposed on both u and v, the radial truncation limit should be chosen at N þ 4.

With the expansion (14), the physical value uN , computed by dividing ~uN by r, is in turn numerically singular at r ¼ 0.
Practically, however, this is not a problem. The vector u at r ¼ 0 is multi-valued (in h-direction) due to the nature of the polar
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coordinates, and such values are not usually needed in the spectral methods (e.g. Gauss–Radau or Gauss–Legendre type ra-
dial collocation grids exclude the point r ¼ 0). It is possible to use the crude vector form u that can be expanded by using the
one-sided Jacobi polynomials (e.g. umðrÞ � rjmj�1Pða;bÞk ð2r2 � 1Þ for m – 0 with use of the weight wðrÞ ¼ r3 for the inner prod-
uct). However, employing the radial flux form ~u is rather more advantageous computationally. As mentioned above, the ra-
dial expansion functions of ~u given by (14) are the same as those of the scalar functions except only m ¼ 0 and, also noting
the fact that their radial derivatives are identical, one can simplify the computer program and save the computer memory by
defining common basis matrices.
3. Linear evolution model

We first apply the tau-method to a linear, hyperbolic-type evolution model that has been frequently used to study the
hydrodynamics of large lakes. The equation set is given by
@U
@t
� BV þ c2 @Z

@r
¼ 0;

@V
@t
þ BU þ c2 1

r
@Z
@h
¼ 0;

@Z
@t
þ @U
@r
þ U

r
þ 1

r
@V
@h
¼ 0:

ð20Þ
Here we denote the dependent variables: the amplitudes of the radial velocity U, the azimuthal velocity V, and the isopycnal
surface Z. ðU;VÞT is a vector, and Z is a scalar field. c is a linear wave phase speed, and B is called the Burger number, a param-
eter defining the effect of Coriolis acceleration. We solve the model equation in a unit disc under the slip-free boundary con-
dition (U ¼ 0 at r ¼ 1).

3.1. Spectral formulation

Before presenting results we describe the spectral formulation of the problem based on the tau-method. Introducing the
radial flux of the vector field defined by the relation ðeU ; eV ÞT ¼ rðU;VÞT , the Eq. (20) is written in the form:
@ eU
@t
¼ RðuÞ;

@ eV
@t
¼ RðvÞ;

@Z
@t
¼ RðzÞ: ð21Þ
The approximated solution set feUN; eV N; ZNg is sought in a truncated series of the form:
ZN ¼
XN

m¼�N

XN

n¼jmj
zmnXmnðr; hÞ;

eUNeV N

 !
¼
XN

m¼�N

XNþ2

n¼jmj; nP1

umn

vmn

	 

Ymnðr; hÞ; ð22Þ
where the expansion functions Xmn and Ymn are defined as
Xmnðr; hÞ ¼ Q mnðrÞeimh; Ymnðr; hÞ ¼ fQ mnðrÞ � dm0ð�1Þkgeimh: ð23Þ
Q mnðrÞ is a one-sided Jacobi polynomial with a particular choice ða; bÞ ¼ ð0; jmjÞ written explicitly here as
Q mnðrÞ ¼ rjmjPð0;jmjÞk ð2r2 � 1Þ; ð24Þ
where n ¼ jmj þ 2k with k ¼ 0;1;2; . . .. Note that the scalar field Z is directly expanded by Q mnðrÞ, and that the vector field
ðeU ; eV ÞT is expanded in the form of (14) in the previous section. The constant dm0ð�1Þk in the definition of Ymn in (23) is ob-
tained after substituting ða; bÞ ¼ ð0; jmjÞ into (14) (i.e. dm0ð�1Þkðjmj þ 1Þk=k! ¼ dm0ð�1Þkð1Þk=k! ¼ dm0ð�1Þk). N represents a
truncation limit for the azimuthal mode. The truncation limit of the radial mode for Z is also N. The radial truncation limit
for the vector field is chosen to be N þ 2 in order to satisfy the boundary condition and the kinematic constraint with the
spectral coefficients of the highest order.

We define an inner product in the form
hX;Yi � 1
2p

Z 2p

0

Z 1

0
XY�rdrdh; ð25Þ
where the upper script (*) denotes the complex conjugate. Orthogonality identities of Xmn and Ymn are given by
hXmn;Xm0n0 i ¼
dmn0dnn0

2ðnþ 1Þ ;

hYmn;Xm0n0 i ¼ hXmn;Xm0n0 i if n – 0:
ð26Þ
Substituting the expansion (22) into (21), and taking the inner product with respect to X�mnðr; hÞ, we obtain, after using the
orthogonality (26), a set of ordinary differential equations (ODEs) for umn;vmn and zmn.
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For given m, we have equations for n ¼ jmj; jmj þ 2; . . . N to determine dumn=dt and dvmn=dt as following
dumn

dt
¼ 2ðnþ 1ÞhRðuÞN;Xmni;

dvmn

dt
¼ 2ðnþ 1ÞhRðvÞN;Xmni:

ð27Þ
In this expression, Rð���ÞN denotes an approximation of Rð���Þ calculated using the approximated solution (22). To describe how to
satisfy both the physical boundary condition and the kinematic constraint, we suppose m – 0 here unless as otherwise noted.

The physical boundary condition (eU ¼ 0 at r ¼ 1) is satisfied by adjusting the highest coefficient umNþ2. Differentiating
with respect to t the expression of the boundary condition (19) with ða; bÞ ¼ ð0; jmjÞ, we have
XNþ2

n¼jmj; nP1

f1� dm0ð�1Þkgdumn

dt
¼ 0: ð28Þ
Since dumn=dt are explicitly determined from the first equation in (27) for n 6 N;dumNþ2=dt is explicitly determined from the
boundary condition (28).

Next, the kinematic constraint is satisfied by adjusting the highest coefficient vmNþ2. Differentiating with respect to t the
kinematic constraint (18) with ða; bÞ ¼ ð0; jmjÞ, we have
XNþ2

n¼jmj
ð�1Þk ðjmj þ 1Þk

k!

dumn

dt
þ i sgnðmÞdvmn

dt

� �
¼ 0 for m – 0: ð29Þ
Since values of dumn=dt are now all known and values of dvmn=dt are determined by the second equation in (27) for
n 6 N;dvmNþ2=dt is explicitly determined from the kinematic constraint (29).

For m ¼ 0, we have the same equation set (27) for eU and eV . Similarly the boundary condition is satisfied by the highest
coefficient in (28). The values of dv0n=dt are explicitly determined from (27) for all n and, therefore, the imposition of the
kinematic constraint is unnecessary. The values of dzmn=dt are determined explicitly for all m and n by the equation similar
to the vector field
dzmn

dt
¼ 2ðnþ 1ÞhRðzÞN ;Xmni: ð30Þ
The values of dumn=dt;dvmn=dt and dzmn=dt are now all determined, and these values can be integrated forward-in-time through
an appropriate ODE integration scheme. In this study we used the fixed time step, fourth-order Runge–Kutta method.

Since the present numerical method was originally developed for solving nonlinear equations being presented in the fol-
lowing section, the inner products in (27) and (30) were numerically evaluated. Numerical evaluation of the inner products
involving nonlinear terms is described in Section 4. At each time step, after integrating umn;vmn and zmn, the solution in the
physical space is computed by (22) through the basis matrix multiplication. The radial derivatives of the solution are com-
puted by (22) with the basis replaced by its derivative that is computed by the formula given in Appendix A. The values
RðuÞN;RðvÞN and RðzÞN are then obtained at the physical collocation grid, and then their inner products are readily computed.

The analytical solution to the evolution system (20) is described in [12, pp. 317–324] and in [6]. Writing the solution in
the form of the radial velocity flux field (i.e. ðeU ; eV ÞT ¼ rðU;VÞT ),
eU ¼ �A0
c2

Bðx2 � 1Þ
eUmðrÞ sinðmh� BxtÞ;

eV ¼ A0
c2

Bðx2 � 1Þ
eV mðrÞ cosðmh� BxtÞ;

Z ¼ A0ZmðrÞ cosðmh� BxtÞ;

ð31Þ
where A0 is a wave amplitude, m ð> 0Þ is an azimuthal wave-number, and radial functions eUmðrÞ and eV mðrÞ are written as
eUmðrÞ ¼ mZmðrÞ �xrZ0mðrÞ;eV mðrÞ ¼ mxZmðrÞ � rZ0mðrÞ:
ð32Þ
The radial eigenfunction ZmðrÞ is normalized by its maximum value; that is, ZmðrÞ ¼ Z�mðrÞ=jZ
�
mðrÞjmax, and Z�mðrÞ is either the

Bessel ðJÞ or the modified-Bessel ðIÞ function depending on the value of x
Z�mðrÞ ¼
ImðB�rÞ if x2 < 1;
JmðB�rÞ if x2 > 1;

(
and B� ¼ B

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1�x2j

q
: ð33Þ
The solution corresponding to x2 < 1 is characterized as the Kelvin wave, and that corresponding to x2 > 1 is characterized
as the Poincaré wave. Radial wave-number k ¼ B� is implicitly defined through x, which is the eigenfrequency determined
by the dispersion relation. For the Poincaré wave mode, the eigenfrequency is given by the transcendental relation
kJm�1ðkÞ �m 1þ 1
x

	 

JmðkÞ ¼ 0: ð34Þ
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This equation is readily solved by the half-interval method. For the Kelvin wave mode ðx2 < 1Þ, the J-Bessel function is re-
placed with the I-Bessel function in (34).

We distinguish the wave traveling direction by calling ‘cyclonic’ (counter clockwise rotation) for positive frequency
ðx > 0Þ and ‘anti-cyclonic’ for negative frequency ðx < 0Þ. For convention, we label the fundamental wave mode through
a format ‘M(azimuthal mode)R(radial mode)’ with the sign plus (+) for cyclonic or negative (�) for anti-cyclonic wave mode.

Since the I-Bessel function possesses the same parity as that of the J-Bessel function, the radial eigenfunction ZmðrÞ fully
satisfies the regularity condition (2). Also, using the series expansions for Bessel functions and complex exponentials for trig-
onometric functions, it can be easily verified that the coefficient of the leading term rm�1 of the exact solution ðU;VÞT fully
satisfies both the parity condition (7) and the kinematic constraint (8).

The exact solution can be expanded by Q mnðrÞ analytically (see Appendix B). In particular, the radial functions of unscaled
form eU�m; eV �m; Z�mn o

for the Poincaré wave mode are expressed as
Fig. 1.
obtaine
eU�mðrÞ ¼ 2
k

X1
k¼0

ð�1Þkðnþ 1Þf½ð1þxÞmþ 2xðkþ 1Þ� Jnþ1ðkÞ � kxJnðkÞgQ mnðrÞ;

eV �mðrÞ ¼ 2
k

X1
k¼0

ð�1Þkðnþ 1Þf½ð1þxÞmþ 2ðkþ 1Þ� Jnþ1ðkÞ � kJnðkÞgQmnðrÞ;

Z�mðrÞ ¼
2
k

X1
k¼0

ð�1Þkðnþ 1ÞJnþ1ðkÞQmnðrÞ;

ð35Þ
where n ¼ mþ 2k. The Kelvin wave counterpart has a similar form with J-Bessel function replaced with I-Bessel function and
omitting the factor ð�1Þk in the above expression. An asymptotic expression of J-Bessel function given by 9.3.1 in [1] is
JnðxÞ �
1ffiffiffiffiffiffiffiffiffi
2pn
p ex

2n

� �n
for n!1 with x fixed: ð36Þ
This expression implies that the expansion coefficients of the radial functions (35) have the property of infinite order, pro-
viding the spectral convergence. This is also true for the Kelvin wave solutions because the identity InðxÞ ¼ ð�iÞnJnðixÞ yields
the same asymptotic relation as (36).

3.2. Simulation results

The spectral method described above was implemented in a computer program written in FORTRAN90, and numerical
computation was performed in double precision arithmetic. A truncated form of the exact solution (35) was used as the ini-
tial value for the spectral evolution Eqs. (27) and (30). Parameters chosen for the example runs are at B ¼ 4 and
c ¼ 0:9394668213. An exact solution of the isopycnal amplitude Z for the anti-cyclonic Poincaré wave of azimuthal mode
one and radial mode one (M1R1�) is presented in Fig. 1(a). Solutions presented in the figure are all normalized by the (ini-
tial) wave amplitude A0. This initial solution field starts to rotate anti-cyclonically around r ¼ 0 at a constant frequency with-
out changing its spatial structure. In the same figure, numerical solutions of both the isopycnal and the velocity amplitude
fields at t ¼ 13:75 are presented. At this time the field rotated around the center ten times. The spectral truncation was cho-
sen at N ¼ 5 with the time step Dt ¼ 0:005, although much larger time step is permissible for stable time integration. The
solution field at t ¼ 13:75 is very close to the exact solution qualitatively. At this truncation only two one-sided Jacobi modes
are contained in the spectral approximation of Z at m ¼ 1. In Fig. 2 a similar comparison is presented for the anti-cyclonic
Poincaré wave of azimuthal mode three and radial mode three (M3R3�). The solution field is compared at t ¼ 5:475 corre-
sponding to approximately ten local oscillation periods ð10	 2p=BxÞ or three and one-third wave rotations. The spectral
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Exact solution of the isopycnal amplitude Z for M1R1�wave mode at t ¼ 0 (a), numerical solution at t ¼ 13:75 (b), and corresponding vector field (c)
d with the spectral truncation N ¼ 5. Contour level step is 0.2.
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Fig. 2. Exact solution of the isopycnal amplitude Z for M3R3�wave mode at t ¼ 0 (a), numerical solution at t ¼ 5:475 (b), and corresponding vector field (c)
obtained with the spectral truncation N ¼ 15. Contour level step is 0.2.

Table 1
Instantaneous error of isopycnal amplitude Z at t ¼ 5:475 sampled at different radial locations for various truncation limit N for time integration with M3R3�
wave mode. Values are normalized by the initial wave amplitude. Values in parentheses in r ¼ 0:35 column are obtained with a halved time step Dt ¼ 0:0025.

N r ¼ 0:35 r ¼ 0:7 r ¼ 1

10 7:24	 10�1 (7:24	 10�1) 5:49	 10�1 7:70	 10�2

15 9:48	 10�3 (9:72	 10�3) 2:19	 10�4 4:37	 10�3

20 6:44	 10�5 (6:65	 10�5) 2:45	 10�5 3:56	 10�5

25 3:96	 10�7 (3:46	 10�9) 2:79	 10�7 2:19	 10�7

30 4:11	 10�7 (1:73	 10�8) 2:78	 10�7 2:29	 10�7
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truncation in this example was chosen at N ¼ 15 with Dt ¼ 0:005. Although the spatial structure of the solution field is more
complicated than the previous example, at this truncation only six one-sided Jacobi modes are present in the spectral
approximation of Z at m ¼ 3. Again, the solution field at t ¼ 5:475 is already very close to the exact solution qualitatively.

In order to quantify the fast convergence of the numerical solutions, local error of the isopycnal amplitude was sampled at
different radial locations on the horizontal axis ðh ¼ 0Þ at a fixed time for various truncation limits. The results for the M3R3�
wave mode at t ¼ 5:475 are shown in Table 1. The sampling locations were chosen at r ¼ 0:35;0:7 and 1, and these locations
are very close to either the local maxima or minima of the isopycnal amplitude field (see Fig. 2). The error values decrease
uniformly and exponentially fast up to the N ¼ 25 (N25) truncation limit, and they converge to some values of certain order
regardless of increasing the truncation limit. For large truncation limit the gross numerical error can become dominated by
the time discretization error. In fact, when halving the time step size to Dt ¼ 0:0025, the numerical errors at N25 and N30
decrease as supplemented in Table 1. Reducing the time step size for small truncation limit does not help reduce the error at
all, implying that the spatial descretization error is rather dominant in the gross error. Hence, the numerical error can de-
crease exponentially fast as a function of the truncation limit, provided the time step size is sufficiently small.

For the next validation we examine the global error of the numerical solutions by calculating conserved quantities of the
system (20). The spatial integrals of the isopycnal amplitude ðMÞ, the relative vorticity ðWÞ and the total energy ðEÞ are con-
served quantities defined as following
M ¼
R 2p

0

R 1
0 Zrdrdh;

W ¼
Z 2p

0

Z 1

0

@V
@r
þ V

r
� 1

r
@U
@h

� �
rdrdh;

E ¼
Z 2p

0

Z 1

0

1
2
fU2 þ V2 þ c2Z2grdrdh:

ð37Þ
The integral isopycnal amplitude M is always conserved in the method presented here. The isopycnal amplitude Z is time
integral of the divergence of the velocity field (see (20)). According to the Gauss divergence theorem, and recalling the nor-
mal velocity vanishing boundary condition (U ¼ 0 at r ¼ 1), the surface integral of the divergence field is identically zero (alt.
M ¼ 0). The present numerical method exactly satisfies the boundary condition through the spectral tau-equation (28), guar-
anteeing M ¼ 0 at all times. The integral vorticity W and the energy E, however, are not conserved in the present method.
Although the azimuthal expansion with Fourier modes helps the integral vorticity be conserved except at the zero-th azi-
muthal mode ðm ¼ 0Þ, the energy, as a quadratic quantity, is not conserved at all azimuthal modes. The evolution equations
for the tau-coefficients (28) and (29) are different from the spectral evolution Eq. (27) projected from the original system Eq.
(20). Hence, the present method seeks for the solutions to the modified equations, a nature of the tau-method [8,5].

Although the present method renders the numerical scheme non-conservative, the deviation of the conserved quantities
diminish as fast as the numerical solution converges. To demonstrate this statement, the integral energy E was calculated at
different times for various truncation limits for the time integration with M1R1� (Table 2) and M3R3� (Table 3) wave
modes. The integration time step was fixed at Dt ¼ 0:005. All the energy values are normalized by the initial value at



Table 2
Energy E computed at different time for various truncation limits N for time integration with M1R1� wave mode. Values are normalized by their initial values
at t ¼ 0.

N t ¼ 1 t ¼ 3 t ¼ 6

5 1.0002782417 0.9995259713 1.0003938509
10 1.0000001149 1.0000000043 1.0000000093
15 0.9999999998 0.9999999988 0.9999999976
20 0.9999999998 0.9999999988 0.9999999976

Table 3
Energy E computed at different time for various truncation limits N for time integration with M3R3� wave mode. Values are normalized by their initial values
at t ¼ 0.

N t ¼ 1 t ¼ 2 t ¼ 3

10 2.4267690168 3.0829407465 2.1702447582
15 0.9945572323 0.9945807190 0.9974414656
20 0.9999898056 0.9999872125 1.0000006896
25 0.9999999502 0.9999998006 0.9999997031
30 0.9999999506 0.9999998023 0.9999997034
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t ¼ 0. It is evident from these tables that the energies uniformly converge exponentially fast up to values of certain order. The
convergence rate of the M1R1�wave mode is much faster than that of the more complicated M3R3�wave mode. Increasing
the truncation limit does not continually diminish the energy deviations because the time descretization error dominates in
the larger truncation limit as suggested above. A more detailed example of the effect of the time step size and the truncation
limit is presented in Table 4, where the energy E of the M1R1�wave mode at t ¼ 5 for the time integration in different trun-
cation limits are tabulated for several time step sizes. It is evident from the table that the spectral convergence to an exact
value (unity) is achieved only if the time step size is sufficiently small (e.g. Dt ¼ 0:01 gives exponential convergence up to
N10 truncation, but at reducing the time step to Dt ¼ 0:001 increases the convergence limit to N20).

The actual, maximum time step Dtmax for stable integrations for the time integration with M1R1�wave mode is shown in
Fig. 3 as a function of the truncation limit N. From this figure it can be observed that the maximum time step is OðN�2Þ for
Table 4
Energy E at t ¼ 5 obtained at different truncation limits N for various time step sizes Dt for time integration with M1R1� wave mode. Values are normalized by
their initial values at t ¼ 0. No-value (–) implies that the time integration is unstable due to excessive time step size.

Dt N ¼ 5 N ¼ 10 N ¼ 20

0.1 0.9937544325 – –
0.05 0.9997005005 0.9998037882 –
0.01 0.9999750209 0.9999999218 0.9999999368052
0.005 0.9999752403 0.9999999763 0.9999999980248
0.001 0.9999752525 0.9999999863 0.9999999999994
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Fig. 3. Maximum allowable time step Dtmax for stable integration as a function of truncation limit N (M1R1� wave mode).
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large N. This trend is related to high-wave-number oscillations of the radial bases close to the boundary r ¼ 1, where the
distance of the zeros of the highest-degree basis Pð0;0ÞN=2 ð2r2 � 1Þ is also OðN�2Þ [5,10]. Noting that there is no efficient transform
method for the Jacobi bases, such a time-stiffness trend may become a restriction for high-spectral resolution time integra-
tions, as one may seek for a potential use of the Chebyshev polynomials which offer efficient (Fast-Fourier-Cosine) trans-
forms. Nevertheless, we appeal the fact that the Jacobi radial bases provide much faster convergence rate than the
Chebyshev bases as demonstrated by many examples in the past, and that the former bases can satisfy all the regularity con-
ditions at r ¼ 0, which is not possible with the later bases.

4. Nonlinear evolution

4.1. Model formulation and algorithmic approach

The next example we apply the method to is a weakly-nonlinear, weakly-dispersive evolution model that is an asymp-
totic derivation based on the nonlinear system whose linearized reduction yields the linear model presented in the previous
section. The asymptotic projection allows the elimination of the vertical structure, yielding a nonlinear system for the evo-
lution of the horizontal structure of a specific vertical eigenmode. The equation set we study is given
@U
@t
� BV þ c2 @Z

@r
¼ � a U

@U
@r
þ V

r
@U
@h
� V2

r

 !
þ bDU

( )
þ l2c

@

@t
@D
@r

	 

;

@V
@t
þ BU þ c2

r
@Z
@h
¼ � a U

@V
@r
þ V

r
@V
@h
þ UV

r

	 

þ bDV

� �
þ l2c

@

@t
1
r
@D
@h

	 

;

@Z
@t
þ @U
@r
þ U

r
þ 1

r
@V
@h
¼ � b U

@Z
@r
þ V

r
@Z
@h

	 

þ aDZ

� �
;

ð38Þ
where D is the horizontal divergence of the velocity field
D ¼ @U
@r
þ U

r
þ 1

r
@V
@h

; ð39Þ
and a; b;l and c are constant coefficients. The linear phase speed c and the Burger number B were kept at the same values as
those in the previous section (c ¼ 0:9394668213; B ¼ 4), and the additional coefficients were chosen as
a ¼ �0:3690737980; b ¼ �0:1845368990, c ¼ 2:007821008 and l ¼ 1=40, which correspond to a specific stratified lake con-
figuration. The solutions to the equation set are sought in a unit disc with the physical boundary condition U ¼ 0 at r ¼ 1.
Besides nonlinear terms, the velocity equations contain dispersive terms consisting of the time derivative of the second spa-
tial derivatives of velocity variables. Except handling of the dispersive terms, the numerical formulation is similar to that of
the linear model discussed in the previous section.

Transforming the velocity field via the relation ðeU ; eV ÞT ¼ rðU;VÞT , we write the equation in the form:
@ eU
@t
¼ RðuÞ þ @

@t
LðuÞr

eU þ LðvÞr
~V

n o
;

@ eV
@t
¼ RðvÞ þ @

@t
LðuÞh

eU þ LðvÞh
eVn o

;

@Z
@t
¼ RðzÞ;

ð40Þ
whereLð���Þr andLð���Þh are linear operators for the dispersive terms. Spectral evolution equations of the velocity field are now cou-
pled in the radial modal space due to the dispersive terms. The velocity equations in the spectral space are written in the form:
dumn

dt
� d

dt

XNþ2

n0¼jmj; nP1

aðuÞmn;n0umn0 þ aðvÞmn;n0vmn0

n o
¼ 2ðnþ 1ÞhRðuÞN;Xmni;

dvmn

dt
� d

dt

XNþ2

n0¼jmj; nP1

bðuÞmn;n0umn0 þ bðvÞmn;n0vmn0

n o
¼ 2ðnþ 1ÞhRðvÞN;Xmni;

ð41Þ
for n ¼ jmj; jmj þ 2; . . . ;N. The constant að���Þmn;n0 is defined by
að���Þmn;n0 ¼ 2ðnþ 1Þ
Z 1

0
Q mnðrÞLð���Þr;mfQ mn0 ðrÞ � dm0ð�1Þkgrdr; ð42Þ
where Lð���Þr;m is a linear operator for azimuthal mode m. Another constant bð���Þmn;n0 is defined in the same way with Lð���Þr;m replaced
with Lð���Þh;m. The integrals were evaluated exactly through the Gaussian quadrature.

Combining the evolution Eq. (41), the boundary condition (28), and the kinematic constraint (29), one can construct a
linear system for dumn=dt and dvmn=dt in the form:
Am
dvm

dt
¼ bm: ð43Þ
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In this equation, Am is a system matrix, the vector vm consists of all sets of ðumn;vmnÞT for given m, and the vector bm consists
of the right hand side of (41), (28) and (29). The size of Am for arbitrary mð–0Þ is ð2bðN � jmjÞ=2c þ 4Þ 	 ð2bðN � jmjÞ=2c þ 4ÞÞ,
where b� � �c denotes the floor function (i.e. bxc gives the largest integer less than or equal to x). The inverse matrices A�1

m are
computed for all m before starting the time integration, and they are multiplied to bm to determine dvm=dt at every time
step.

Inner products on the right hand side of the Eq. (41), now involving nonlinear terms, are numerically evaluated in accor-
dance with the same philosophy described in [24]. To be specific to our problem, we write an inner product in the form
hRðuÞNðr; hÞ;Xmnðr; hÞi ¼
Z 1

0
RðuÞNm Q mnðrÞrdr: ð44Þ
Here RðuÞNm ðrÞ is an inner product of RðuÞN with respect to e�imh defined as
RðuÞNm ðrÞ ¼ 1
2p

Z 2p

0
RðuÞNðr; hÞe�imhdh: ð45Þ
Since the maximum wave-number of the integrand is 3N (i.e. 2N for RðuÞN and N for e�imh), the integral (45) is calculated
exactly through a discrete Fourier transform
RðuÞNm ðrÞ ¼ 1
K

XK

k¼1

RðuÞNðr; hkÞe�imhk ; ð46Þ
where hk ¼ ð2p=KÞðk� 1Þ and K P 3N þ 1. This transform can be computed efficiently employing the fast Fourier transform.
In this study we chose the value of K at a power of 2. After obtaining RðuÞNm ðrÞ, the radial integral in (44) is evaluated through
the Gauss–Legendre type quadrature. Since (44) is an integral with respect to the weight r, it is convenient to use zeros of a
Jacobi polynomial of the form Pð1;0Þn ðxÞ for the abscissas [11]. The quadrature formula is written explicitly as
Z 1

0
RðuÞNm ðrÞQ mnðrÞrdr ¼

XL

l¼1

RðuÞNm ðrlÞQmnðrlÞwl; ð47Þ
where rl is the lth zero of Pð1;0ÞL ð1� 2rÞ, and corresponding weight wl is given by
wl ¼
1

4r2
l Pð1;0Þ

0

L ð1� 2rlÞ
h i2 : ð48Þ
Since the maximum degree of the polynomial in the integrand is 3N þ 4 (i.e. 2N þ 2 for RðuÞNm and N þ 2 for Q mn), the quad-
rature formula (47) is exact, provided L P ð3N þ 5Þ=2.

4.2. Simulation results

For numerical examples we consider the evolution of the initial value defined by (32) in the previous section. Although
the solution (32) now becomes only a leading order, asymptotic solution (at vanishing amplitude) to the present nonlinear
model (38), it is still interesting to see whether the model is stably integrated for a long-time yielding physically reasonable
solutions through the proposed numerical method.

In Fig. 4 an evolution of the azimuthal mode one Kelvin wave (M1R1+) initial condition of amplitude A0 ¼ �0:3 is shown
at several different times. Spectral resolution was chosen at N ¼ 70 with time step Dt ¼ 0:0025, although much larger time
step is available. It should be noted here that since the model Eq. (40) is given in a ‘‘regularized” form (i.e. spatial derivative
operators act on @ðU;VÞT=@t), much larger time step can be allowed at the cost of solving the implicit Eq. (43) at every time
step (e.g. see [5, pp. 181–182]). With the given spectral resolution the radial collocation is at L ¼ 108 points, and the azi-
muthal collocation is at K ¼ 256 points. Only a solution of the isopycnal surface Z is shown in the figure because it is the
time integral of the divergence of the velocity field, containing important physical essence of the velocity field. Observing
the figure, the negative side of the isopycnal surface travels faster than the positive side, generating a front that gradually
steepens as it travels in the cyclonic (counter clockwise) direction (see Fig. 4(b) corresponding to t ¼ 8 
 1:4T , where T is
a linear wave period). The front continually steepens as the wave field evolves and it starts to generate a train of oscillatory
waves (see Fig. 4(c) corresponding to t ¼ 16 
 2:7T). The leading front passes eventually through its own oscillatory tail, gen-
erating ripples (see Fig. 4(d) corresponding to t ¼ 24 
 4:1T), and the field becomes more complicated. The steepening of the
wave-front is a familiar effect of nonlinearity, and subsequent generation of oscillatory waves results from an approximate
balance between the nonlinearity and the dispersive effect in the model. This solution behavior is very similar to that found
in the well known Korteweg de Vries equation, the fundamental model describing the weakly-nonlinear and the weakly-dis-
persive effect. The time integration consists of 28000 time steps was performed stably.

Although not mentioned earlier, the resolution-doubling tests were conducted to examine the convergence of the numer-
ical solutions. We emphasize here that such tests, although quite standard, are particularly useful in this case because the
solutions in Fig. 4 exhibit the steep wave-front entailing sub-basin-scale, dispersive waves and even smaller waves, which
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Fig. 4. Evolution of a Kelvin wave (M1R1+) initial condition of amplitude A0 ¼ �0:3 in the weakly-nonlinear and weakly-dispersive model. Snap shots of
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are always subject to a fundamental question whether they are physical (model-relevant) or just numerical artifacts related
to under-resolution. In Fig. 5 solutions at different truncation levels are compared at the stage of the generation of dispersive
waves after front steepening ðt ¼ 16Þ and subsequent generation of ripples ðt ¼ 24Þ. A common time step Dt ¼ 0:0025 was
used for all the truncation levels. At t ¼ 16 with the low truncation N23, small oscillations appear in the fore side of the cycl-
onically progressing front. Such oscillations are not physically relevant because the dispersion relation for the weakly-dis-
persive system does not allow high-wave-number waves to propagate faster than low-wave-number waves. These
oscillations, which we refer to as Gibb’s-type phenomena, are caused by an insufficient spectral resolution. It is clearly
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observed from the figure that such Gibb’s oscillations disappear for larger truncations. At t ¼ 24 the dispersive waves are
resolved to a certain level with N23, but it lacks ripples due to under-resolution as they are clearly observed in larger trun-
cations. The solutions appear to be converged at N45 qualitatively, and further doubling the resolution to N90 yields almost
indistinguishable results.

In Fig. 6 the total energy density (the integrand of the energy expression E in (37)) was calculated as a function of azi-
muthal mode m for several different times. Modal energies were all normalized by the total system energy. The spectral con-
vergence is readily observed from the figure. Initially the energy is concentrated only in azimuthal mode m ¼ 1. The initial
energy is subsequently transferred to higher modes as the nonlinear wave-front steepens until the oscillatory waves are gen-
erated, and then the spectral convergence rate becomes almost saturated.
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Fig. 7. Evolution of a Poincaré wave (M1R1�) initial condition of amplitude A0 ¼ �0:3 in the weakly-nonlinear and weakly-dispersive model. Snap shots of
isopycnal surface Z are taken at (a) t ¼ 0, (b) t ¼ 3, (c) t ¼ 3:4 and (d) t ¼ 24. Contour level step is 0.05.
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For the next example, an evolution of the Poincaré wave of azimuthal mode one and radial mode one (M1R1�) was exam-
ined and results are presented in Fig. 7. The numerical run configuration is the same as that in the Kelvin wave example de-
scribed above. The initial condition is symmetric, but the field quickly loses its symmetry as it rotates in the anti-cyclonic
(clockwise) direction (Fig. 7(b)). The evolving asymmetric field tends to return to a near symmetric field (Fig. 7(c)), and this
repeats aperiodically for the rest of evolution. The numerical model was stably integrated, and it was run up to t ¼ 24 which
corresponds to about seventeen and half wave rotations around the center (Fig. 7(d)).

In Fig. 8 the maximum and minimum values of the isopycnal surface for different initial wave amplitudes A0 are
presented as a function of time. Values are normalized by the initial wave amplitude. The modulation of the amplitudes
becomes larger as the initial amplitude increases, implying that the modulation is a nonlinear phenomenon. This pseudo
recurrence of the Poincaré wave field has not been recognized before, but is clearly revealed by simulation employing the
present numerical method.
5. Conclusions

In this paper we proposed a tau-method approach that can fully satisfy the regularity condition (kinematic constraint)
and the boundary conditions of the solutions to vector field equations defined in the polar coordinates. This approach
avoids an explicit coupling of radial basis functions of the polar vector field variables, and it enables one to utilize the
original, simple form of the one-sided Jacobi polynomials as the radial basis if the vector field variables are transformed
into the radial flux form. Also, the method provides flexibilities in specifying the boundary conditions without modifica-
tion of the basis functions. Especially for the problem involving both vector and scalar functions, therefore, the implemen-
tation of the method is expected to be easier than that of the Galerkin method. The spectral convergence was
demonstrated through the stable time integration of evolution equations comprising both the scalar and the vector fields.
Since the tau-method seeks the solution to the modified equation, the conserved quantities of the original equation model
are not generally conserved. But the variation of the quantity can be diminished to some negligible level with sufficient
spectral and time resolutions.

The maximum allowable time step for hyperbolic-type equations is OðN�2Þ for large truncations. For high-resolution,
time-dependent problems, the Jacobi radial bases possibly lose their competitiveness in regard to computational efficiency
over the Chebyshev polynomials. However, the proposed method with the Jacobi bases enforces all the regularity conditions
at the origin and, therefore, one is able to obtain physically-behavioral, ‘‘worry-proof” solutions over the entire domain at all
time levels of integration. This point is significantly important and should not be overlooked especially when one performs
long-time integrations with hyperbolic-type equations. Because unphysical solution components (e.g. 2h-waves) related to
insufficient treatment of regularity at the origin usually spread over the entire domain without being damped, polluting the
entire solution field, the simulated field loses physical relevance. If there are nonlinear terms in the equations (as is usual in
fluid mechanics), such numerical instabilities can be quite easily amplified by the nonlinear effects, rending the numerics
quickly broken down.

In this paper we showed numerical examples only in a two-dimensional disc, but the proposed method can be readily
extended to a three-dimensional, cylindrical domain (e.g. Navier–Stokes equations), and this area will be pursued in the fu-
ture work.
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Appendix A. Some properties of the Jacobi polynomials

We summarize some properties of the Jacobi polynomials referred in this paper. Although many useful properties are
found in [23,17,9], care must be taken in the application because their definitions of the radial basis functions are slightly
different. In this paper, we follow the definition established by Verkley [23].

The one-sided Jacobi polynomials are defined here as QmnðrÞ ¼ rjmjPða;bÞk ðxÞ where x ¼ 2r2 � 1 and n ¼ jmj þ 2k. The arbi-
trary parameters ða; bÞ are kept as they are so as not to loose the generality.

A.1. Series expansions

Power series of the one-sided Jacobi polynomials is given by
Q mnðrÞ ¼ rjmjPða;bÞk ðxÞ ¼ ð�1Þk
Xk

k0¼0

ð�1Þk
0 ðbþ 1Þkðbþ 1þ kþ aÞk0
ðbþ 1Þk0k

0
!ðk� k0Þ!

rjmjþ2k0 : ð49Þ
From this expansion the coefficient of the leading power rjmj is used to obtain the kinematic constraint (18). The inverse
expansion of (49) is also given by
rjmjþ2k ¼
Xk

k0¼0

ð2k0 þ aþ bþ 1ÞCðbþ kþ 1Þðk� k0 þ 1Þk0
ðkþ k0 þ aþ bþ 1ÞCðbþ k0 þ 1Þðk0 þ aþ bþ 1Þk

Q mn0 ðrÞ: ð50Þ
The derivations of above expansions for a particular parameter set ða; bÞ ¼ ð0; jmjÞ are found in [23].

A.2. Formulae for derivatives

For calculation of the derivatives we employ a direct formula given by
dl

dxl
Pða;bÞk ðxÞ ¼ ðaþ bþ kþ 1Þl

2l
Pðaþl;bþlÞ

k�l ðxÞ: ð51Þ
Using this property the recurrence formula for the first derivative of QmnðrÞ is expressed as
r
dQ mnðrÞ

dr
¼ rjmj jmjPða;bÞk ðxÞ þ 2r2ðaþ bþ kþ 1ÞPðaþ1;bþ1Þ

k�1 ðxÞ
n o

; ð52Þ
and the second derivative can be also expressed as
r2 d2

dr2 QmnðrÞ ¼ rjmj jmjðjmj � 1ÞPða;bÞk ðxÞ þ 2ð2jmj þ 1Þðaþ bþ kþ 1Þr2Pðaþ1;bþ1Þ
k�1 ðxÞ þ 4ðaþ bþ kþ 1Þ2r4Pðaþ2;bþ2Þ

k�2 ðxÞ
n o

:

ð53Þ

For k 6 1 (alt. jmj 6 n 6 jmj þ 2), the derivatives are computed by the following:
r
d
dr

rjmjPða;bÞ0 ðxÞ ¼ jmjrjmj;

r2 d2

dr2 rjmjPða;bÞ0 ðxÞ ¼ jmjðjmj � 1Þrjmj;

r2 d2

dr2 rjmjPða;bÞ1 ðxÞ ¼ f�ðjmj � 1Þ2ðbþ 1Þ þ ðjmj þ 1Þ2ðaþ bþ 2Þr2grjmj:

ð54Þ
The derivatives (52) and (53) can be calculated by successively evaluating Pða;bÞk ðxÞ using the standard recurrence formula
given by 22.7.1 in [1].

A.3. Boundary values

The standardization of the Jacobi polynomials is defined by 22.2.1 in [1] as
Pða;bÞk ð1Þ ¼
kþ a

k

	 

¼ ðaþ 1Þk

k!
: ð55Þ
Hence, the boundary value of Q mnðrÞ at r ¼ 1 is given by
Q mnð1Þ ¼ rjmjPða;bÞk ð2r2 � 1Þ
���
r¼1
¼ ðaþ 1Þk

k!
: ð56Þ
The boundary value of the first derivative of QmnðrÞ can be deduced using (55) and (52), given by the following�

dQ mnðrÞ

dr

���
r¼1
¼ jmj þ 2kðaþ bþ kþ 1Þ

aþ 1

� �
ðaþ 1Þk

k!
: ð57Þ
This can be readily used to enforce Neumann boundary conditions.
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Using a symmetry property Pða;bÞk ð�xÞ ¼ ð�1ÞkPðb;aÞk ðxÞ given by 22.4.1 in [1], Q0nð0Þ is obtained as
Q0nð0Þ ¼ Pða;bÞk ð2r2 � 1Þ
���

r¼0
¼ Pða;bÞk ð�1Þ ¼ ð�1ÞkPðb;aÞk ð1Þ ¼ ð�1Þk ðbþ 1Þk

k!
; ð58Þ
where (55) is used in the last step. This property is used to construct the radial expansion function of the radial velocity flux
given by (14). Accordingly, the Dirichlet boundary condition of the radial velocity flux (19) is obtained using the property
(56).

Appendix B. Derivation of expansion coefficients

We describe the derivation of the expansion coefficients of the exact solution to the linear evolution model given in (35).
Here we consider expanding the non-scaled radial function of radial velocity flux eU�mðrÞ in terms of the one-sided Jacobi poly-
nomials with parameter set ða; bÞ ¼ ð0;mÞ, that is Qmn ¼ rmPð0;mÞk ð2r2 � 1Þ assuming m > 0. Taking the Poincaré wave mode
JmðkrÞ for ZmðrÞ in (32), and using the recurrence relation J0mðxÞ ¼ Jm�1ðxÞ �mJmðxÞ=x; eU�mðrÞ is written
eU�mðrÞ ¼ ð1þxÞmJmðkrÞ � kxrJm�1ðkrÞ: ð59Þ
Expansion of JmðkrÞ in terms of QmnðrÞ is already derived by Verkley [24] as following
JmðkrÞ ¼ 2
k

X1
k¼0

ð�1Þkðnþ 1ÞJnþ1ðkÞQ mnðrÞ; and n ¼ mþ 2k: ð60Þ
The term rJm�1ðkrÞ in (59) can be expanded in terms of QmnðrÞ by following the similar procedure to derive above expansion
described in [24]. Using the power series expansion of the Bessel function, rJm�1ðkrÞ is written
rJm�1ðkrÞ ¼ k
2

	 
m�1X1
k¼0

ð�1Þk

k!ðm� 1þ kÞ!
k
2

	 
2k

rmþ2k: ð61Þ
Expansion of polynomial power rmþ2k in terms of QmnðrÞ is given by (50) in Appendix A with ða; bÞ ¼ ð0;mÞ
rmþ2k ¼ rn ¼
Xk

k0¼0

ðmþ 2þ 2k0Þðk� k0 þ 1Þk0
ðmþ 2þ kþ k0Þðmþ 2þ kÞk0

Q mn0 ðrÞ: ð62Þ
Substituting (62) into (61), and converting terms with Pochhammer symbol to the factorial form, we get
rJm�1ðkrÞ ¼ k
2

	 
m�1X1
k¼0

Xk

k0¼0

ð�1Þkðmþ kÞðmþ 1þ 2k0Þ
ðk� k0Þ!ðmþ 1þ kþ k0Þ!

k
2

	 
2k

Qmn0 ðrÞ: ð63Þ
Changing the order of summations we write this expression as
rJm�1ðkrÞ ¼
X1
k0¼0

ðmþ 1þ 2k0ÞQmn0 ðrÞ
k
2

	 
m�1X1
k¼k0

ð�1Þkðmþ kÞ
ðk� k0Þ!ðmþ 1þ kþ k0Þ!

k
2

	 
2k
( )

: ð64Þ
The bracketed sum f� � �g is decomposed into two sums
f� � �g ¼ k
2

	 
m�1X1
k¼k0

ð�1Þk

ðk� k0Þ!ðmþ kþ k0Þ!
k
2

	 
2k

� ðk0 þ 1Þ k
2

	 
m�1X1
k¼k0

ð�1Þk

ðk� k0Þ!ðmþ 1þ kþ k0Þ!
k
2

	 
2k

: ð65Þ
Letting k� k0 ¼ l, this is written in a following form
f� � �g ¼ ð�1Þk
0 2

k

	 

k
2

	 
mþ2k0X1
l¼0

ð�1Þl

l!ðmþ 2k0 þ lÞ!
k
2

	 
2l
" #

� ð�1Þk
0
ðk0 þ 1Þ 2

k

	 
2 k
2

	 
mþ1þ2k0X1
l¼0

ð�1Þl

l!ðmþ 1þ 2k0 þ lÞ!
k
2

	 
2l
" #

:

ð66Þ
Recalling the series expansion of the Bessel function, the first square bracketed term is Jmþ2k0 ðkÞ, and the second bracketed
one is Jmþ2k0þ1ðkÞ. Writing the expression explicitly, we have that
f� � �g ¼ ð�1Þk
0 2

k

	 

Jmþ2k0 ðkÞ � ð�1Þk

0
ðk0 þ 1Þ 2

k

	 
2

Jmþ2k0þ1ðkÞ: ð67Þ
Substituting (67) into (64) and using mþ 2k0 ¼ n0; rJm�1ðkrÞ is expanded in the form
rJm�1ðkrÞ ¼ 2
k

X1
k0¼0

ð�1Þk
0
ðn0 þ 1Þ Jn0 ðkÞ �

2
k
ðk0 þ 1ÞJn0þ1ðkÞ

� �
Qmn0 ðrÞ: ð68Þ
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Substituting (68) and (60) into (59), we obtain the expansion coefficients of eU�mðrÞ given in (35). The expansion of eV �mðrÞ is
obtained through a procedure similar to that described above. Corresponding expansion coefficients for the Kelvin wave
mode ImðkrÞ are easily deduced by replacing k with ik, and using the identity JnðixÞ ¼ ðiÞ

nInðxÞ in (35). It turns out that the
J-Bessel functions are replaced with I-Bessel functions, and alternating signs ð�1Þk are eliminated in (35).
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